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Abstract. On the basis of a numerical computation of the ground states in the sectors with
a given total spinS we study the magnetic properties of the one-dimensional frustrated
antiferromagnetic Heisenberg model at zero temperature and at the spin-fluid—dimer phase
transition. We find that the magnetization cur##(B) has a quartic-root singularity near
saturation,B —> 4. The longitudinal spin—spin, the dimer—dimer and the transverse spin-spin
structure factors develop singularities at the field-dependent morpeatas(M) = 7w (1—2M)

and p = p1(M) = 27 M, respectively. The type of each of these singularities depends on the
frustration parameter and the magnetizatidn

1. Introduction

During the last few years quantum spin systems with competing interactions have been
investigated by several groups [1-8]. These systems are of interest because of frustration
effects which lead to a rich phase structure. In the case of the one-dimensional

antiferromagnetic spin-1/2 Heisenberg model with next-to-nearest-neighbour coupling:

N
H(@)=2) [s(x)-s(x + 1) + as(x) - s(x + 2)] (1.1)

x=1
it has been pointed out by Haldane [1] that the ground-state order changes from a gapless
‘spin-fluid phase’ fore < a, to a ‘dimer phase’ with a finite gap far > «.. The critical
coupling has been found to lag ~ 0.25. In the dimer phase at= 1/2 the ground state of
the model is known to be twofold degenerate [9-11]. Both ground states can be represented
as products:

=[] bxx+1] 1=1,2 (1.2)
x=I,1+2,...

of nearest-neighbour spin-0 wave functions § + 1]—called ‘dimers’. Normalized
eigenstates of the momentum operator are given by

1
l90) = (1) +0o12) 1.3)

where
q+ = O q-=T. (14)
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On leaving the special point = 1/2 the degeneracy of the ground state is lifted. In the
region 0< o < 1/2 the momenta of the ground state and the first excited state aré,
g=mnfor N =4,8,...andg =7,q =0 for N =6,10,..., respectively. The total

spin of the ground state iS = 0; the total spin of the first excited state §s= 1 in the
spin-fluid phase region & o < «. and S = 0 in the dimer phase regiom. < o < 1/2.
Therefore, the critical point = «, is characterized by the crossing of the lowest singlet
and triplet excitations. The difference in long-range order in the two phases shows up in the
spin—spin and dimer—dimer correlators. In this paper we will investigate the corresponding
static structure factors:

Si(a,p,M =S/N,N) = 42eXp(ipx)(S|s,-(O)sj(x)|S) j=13 (1.5)

D(a, p, M = S/N, N)
=4 explipx) ((SI[(0) - sDI[s(x) - s(x + D]IS) — (SIs(0) - s(VIS)?)
(1.6)

in the ground statefS) with definite total spinSs = S. This enables us to study the zero-
temperature properties of the model in the presence of a magneti@figith magnetization
M(B) = S/N.

ForS =0, M = 0, equation (1.5) is known to diverge logarithmically for> 7, N —
oo anda = 0:

S0, p,0,00) =5 —aln (1— 3) j=13 (1.7)
' 4
S;0,7,0,N) = 4+alnN  j=13 (1.8)

The renormalization group approach of [5] and [9] predicts for the leading behaviour of (1.7)
and (1.8) [ In(1 — p/7)]¥? and (In N)*?2, respectively. From the momentum dependence
[10] (for p < 137/14, N < 28) one expects that the amplitude of the leading term is
at most 5% of the linear term-In(1 — p/m). On the other hand, the size dependence
of (1.8) has been investigated recently [11] for large systems (u@ te 70) by means
of the DMRG, and consistency has been found with a fit of the fefim(cN/2)]®/? with
a =6.67x 1072, ¢ = 255. (See also [12-14].)

It was argued in [2] on the basis of numerical results on rings of upy te- 20 that
the behaviour (1.7) and (1.8) persists over the whole spin-fluid phase regioa.. In the
dimer phase region > «., however, the spin—spin structure factor is expected to be finite.
From (1.3) one can compute both structure factors (1.5) and (1.6) for1/2, M = 0:

2sirt(p/2) N
14 21-nN/2 14 2N/2-1 p.7

S;(1/2,p,0,N) = j=13 (1.9
D2 . 0. N) — 31-24N2¢cosp 9 N 5 9 N
A/2p. 0Ny =g gvp T g1yt iy vee o

(1.10)

The spin—spin structure factor (1.9) is finite for all momentum valpegcluding . On
the other hand, the dimer—dimer structure factor (1.10) is finitepfer = and jumps to
infinity for p = 7, N — oo, which is the signature for long-range dimer order.

The outline of the paper is as follows: in section 2 we present our results for the spin—
spin and dimer—dimer structure factorsMt= 0 and for various values of the frustration
parameterx between 0 and /2. In section 3 we compare the magnetization curves for the

3p.0-
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unfrustrated¢ = 0) and the frustrated caseat= 1/4, where we expect the transition from

the spin-fluid to the dimer phase. The same comparison is given in sections 4 and 5 for
the longitudinal spin—spin, the dimer—dimer and the transverse spin—spin structure factors
in the presence of an external field. Remarkable structures are found which we interpret as
signatures of the phase transition.

2. Structure factors in the spin-fluid and dimer phases atM = 0

According to [2], the spin—spin structure factSy(o, p = n, M = 0, N) is expected to
increase linearly with I&v in the spin-fluid phase region < «.. Figure 1 shows our
results forN = 4,6, ...,28. Indeed one observes an almost linear increase Ahwith a
tiny curvature, which is convex far < 0.25 and concave fo > 0.25. The behaviour in
the spin-fluid phase regionQ o < «, can be parametrized by as follows:

Sj(a, 7,0, N) =a(@)InN + b(x) No@

j=13a <. (2.1)

The parameters are listed in table 1.
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Figure 1. The spin-spin structure factor as a function of the system 8izéor « =
0,0.1,0.2,0.25,0.3,0.35,0.4. The solid curves are fits of the form (2.1).

a(a) and b(x) are quite stable for < o, = 1/4. At o« = a,—where we expect
the phase transition—we ge{1/4) = 0.94(3). The exponent(«x) approaches zero for
a — a, and we see a very clean logarithmic behaviour.

We made various attempts to parametrize the size dependence of our numerical results.
The ansatz(2.1) has the advantage that it reproduces the above-mentioned curvature in
a very simple way. No doubt other parametrizations (e.g. including terms of the form
a[ln(cN/2)]%?) are possible as well.
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Table 1. Estimated values of the parameters in equation (2.1).

a al@)  bla) ¢

0.00 145 221 0.79
0.10 133 162 047
0.20 113 149 0.23
0.25 094 150 0.08

In the dimer phase regioa., < o < 0.5 the finite-size behaviour is quite different.
From (1.9) we see that finite-size effects drop exponentially at 1/2. This behaviour
seems to persist for.d < o < 0.5, but breaks down for smaller values. We were unable
to find a few-parameteginsatzfor the finite-size behaviour in the regien < o < 0.4.

Let us next turn to the dimer—dimer structure factor (1.6). It should be noted that our
definition of the dimer—dimer correlators differs from the definition of [2]. The latter is
obtained from ours by substituting for the scalar products in (1.6):

s(x)-s(x +1) = s1(x)s1(x + 1) + so(x)s2(x + 1).

On the basis of their definition and their results #r< 20 the authors of [2] concluded that
the corresponding structure factor increases witn the dimer phase regian. < o < 1/2
and with InN in the spin-fluid phase regioa < «.. Our results for the dimer—dimer
structure factor (1.6) ap = = on rings withN = 4,6, ..., 28 are shown in figures 2(a)
and 2(b). In the dimer phaseat= 0.5 we observe the behaviour linearif as is predicted
from (1.10). With decreasing values ofthe linear behaviour persists ford0< o < 0.5,

but the slope becomes flatter. Belaw= 0.4 a concave curvature emerges for the data
points which can be reproduced by thesatz

D(a,m,0,N) = c(a) + d(a)N*®. (2.2)

The parameters are listed in table 2.

Table 2. Estimated values of the parameters in equations (2.2) and (2.3).

o cl@) d@ @ d@ N@

0.00 560 -3.32 -0.15 086 0.03
0.10 7.39 -545 -0.14 1.04 0.12
0.20 219 -204 -0.05 107 0.23
0.25 -16.7 180 0.06 094 0.25
030 —2.23 365 024 053 0.13
035 080 102 054 — —
040 212 030 09 — —
045 103 037 105 — —
050 017 059 099 — —

The exponentyp(«) is approximately 1 for @ < o < 0.5 and then drops rapidly to
zero if we approach the critical poiat — «.. In the spin-fluid phase regiom < «, the
exponentp(a) turns out to be negative. This implies that the dimer—dimer structure factor is
finite in the spin-fluid phase. At the critical point we expect the expopéaj to approach
0. Note also the rapid variations ofx) andd(«) and the delicate cancellations between
the two contributions in (2.2) for.2 < o < 0.3. They are easily understood if we rewrite
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Figure 2. The dimer—dimer structure factor as a function of the system/géiz&he solid curves
are fits of the form (2.2). (a¢ =0, 0.1, 0.2,0.25; (b)« = 0.3, 0.35, 0.4, 0.45, 0.5.

(2.2) as follows

it (@)
D(e. 7.0, N) = d(“)((N)w - 1) 2.3)
() \\ N(a)

i.e., in terms of the more stable quantiti&g) and N («), which vary only slowly witha as

can be seen in table 2. If (2.3) describes correctly the finite-size behaviour, the critical point
with ¢(a.) = 0 is accompanied with a logarithmic increase of the dimer—dimer structure
factor (2.3) with the system siz¥:

N—o00

D(a,, 7,0, N) — c?(ac)ln<

N
N(aa) ' @4

This is indeed the case as can be seen from figure 2(a). The slope at the critical point
a. = 1/4 turns out to be

d(1/4) = 1.192) (2.5)
Let us assume that we have scalingrat o, = 1/4 in the combined limit
Nooo  pom, 7= (1 - E) N fixed. (2.6)
T

Then we would expect from (2.1) and (2.4) a logarithmic divergencepfes 7 in both
structure factors:

S (e, p. 0,00) 225 —a(ere) I (1 _ 5) =13 (2.7)
T

D(ae, p, 0, 00) 225 —d(a,)In (1 _ g) (2.8)
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with the same slopes:
a(a,) = 0.91(3) d(a.) = 1.17(3) (2.9)

as found in the finite-size dependencepat . This is indeed the case as can be seen from
figure 3, where we have plotted the momentum dependence of all of the structure factors
with N = 8,10, ...,28. Away from the critical momenturp = =, finite-size effects die

out rapidly with N=2. Therefore it is rather easy to estimate the thermodynamical limit of
the structure factors at noncritical momentac< .

o
25 + ¢ ¢°
0
o}
. t
2 A g ©
°g
< o to
S
8 151 oo
§¢ S
5 . o
g Sj((lc,p,M=0,N) . * 9
o
£ 1 W o DlopM=0N)
o
/' &® o
.
05 1 ’ 90890
) .,’
il
@9&8
0 + 8 o o

0 02 04 06 08 1 12 14 16 18 2 22 24 26
-In(1-p/m)

Figure 3. The spin—spin and dimer—dimer structure factorseat= o, = 1/4 versus
—In(1— p/m).

3. The zero-temperature magnetization curve atx = a.

The difference between the long-range order in the spin-fluid phase and that in the dimer
phase has an immediate consequence for the magnetization MueseM (o, B) = S/N

at zero temperature. For § o < «, one expects a linear relation betwegh and B

for small external fieldsB. For o > «., however, a honvanishing magnetization demands
that the external field exceeds a critical valug:> B.(x). The magnetization curve of

the frustrated AFH model was exploited first by Tonegawa and Harada [15] applying the
method of Bonner and Fisher [16] to systems of up to 20 sites. The information on the
magnetization curve & = 0 can also be taken from the ground-state energies per site at
a given total spins [17]:

§(at, M)

e(a, M, N) = e(a, M) — NG

(3.1)
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Once the finite-size effects have been analysed, the magnetization curve follows from
de(a, M) _
oM

The finite-size behaviour of the ground-state energy per site-atl/4 andM = 0O is of

the form N2, just as it is in the unfrustrated case= 0. We find for the thermodynamical
limit

B(a, M). (3.2)

g0 = (1/4, 0) = —0.801 115) 3(1/4,0) = 1.22(2) n(1/4,0) = 2. (3.3)

For small values oM the ground-state energies per site (3.1) scale nicely in an improved

scaling variable:

1—4M?
6N?

which was introduced in [17] for the unfrustrated cages 0. Figure 4 demonstrates that

the scaling of the ground-state energies (3.1) works even better in the frustrated case with
o = 1/4. Therefore we can extract from figure 4 the thermodynamical limit:

(M*? = M? — (3.4)

e(1/4, M) = £0(1/4,0) + e1(1/4,00)M? + . .. g1 =68(1/4,0). (3.5)
From (3.2) and (3.5) we get for the zero-field susceptibility
oM (a., B 1 1.35(5
Y@, 0 = Mee Bl L 1S¥O) (3.6)

B |z 2e1 272

which is a a value that is not so different from that of the unfrustrated mgde! (/272).

06 1 *
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0 0.02 004 006 008 01 012 014 016 018 02 022 024 026
M*

Figure 4. The ground-state energies per site versus the improved scaling variable (3.4) for
a =0,1/4. The solid line is the Bethansatzsolution on a ring withN = 2048.
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Figure 5. The local derivative (3.7) of the ground-state energies near saturation versus the

optimized scaling variable (3.10) far = 0, 1/4. The solid line is the Bethansatzsolution on
a ring with N = 2048.

Significant differences between the frustrated and unfrustrated model appear in the
magnetization curves near saturatidth = 1/2. These differences are best seen in the
local derivative:

e(a, M) — e(a, 1/2) _

M—1/2 4 — bp(a)(1— 2M)? — 23(@) (1 — 2M)® — E4(a) (L — 2M)* + ...
(3.7)

where
e(a, 1/2) = 1;“ 3.8)
is the ground-state energy in the spin sedet N/2. The saturating field, is given by
% M=1/2 =Bl /5 =4 3.9

Note that the Taylor expansion on the right-hand side of (3.7) starts with the quadratic term
in 1—2M. In the unfrustrated case, = 0, the vanishing of the linear term is known from
the result of Yang and Yang [18]. For the frustrated case the validity of the right-hand side
of (3.7) can be checked only via numerical results. For this purpose we need an accurate
estimate ofe(a, M) near saturation. In figure 5 we have plotted (3.7)f0= 6,8, ..., 28
anda = 0, 1/4 versus an ‘optimized scaling variable’:

x(a) = (1—2M)% — % (3.10)
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Figure 6. The zero-temperature magnetization curvedcr 0, 1/4. The solid line is the Bethe
ansatzsolution on a ring withV = 2048.
where
(3.11)

8(0) = 3.5(4) 5(1/4) = 2.5(4).

In the unfrustrated case, = 0, one observes a linear behaviour for small values wfith

a slope
(3.12)

£2(0) = 0.90(5)
which is quite close to the analytic resmit/12 = 0.82. .. of [18]. For the frustrated case,

however, we observe a parabolic behaviour for small values of
£4(1/4) = 1.70(5). (3.13)

£2(1/4 =0 £3(1/4 =0
Therefore the resulting magnetization curves behave quite differently near saturation,
B — B;.
-5 1 1
M©, B) =5~ _ Z (B, — B)Y/? (3.14)
2 7w
(3.15)

B— By 1 1 1/4
~ 4B — B4
€4

M(1/4.B) = 3

As can be seen in figure 6, this different behaviour is also apparent in the magnetization
curves which we computed via the method of Bonner and Fisher [16].
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Figure 7. The momentum dependence of the longitudinal spin—spin structure factors at fixed
magnetizationt = 1/4 for o =0, 1/4.

4. Longitudinal spin—spin and dimer—dimer structure factors in the presence of a
uniform field at o« = .

The most spectacular difference between the unfrustrated AFH model and the frustrated
model ate = 1/4 shows up in the longitudinal spin—spin structure factors if we switch on
an external field. The unfrustrated case has been treated in [19]. Here we found a cusp
singularity—originating from a ‘soft mode’ [20]—at momenta

p = pa(M) = x(1—2M) (4.1)

where the longitudinal structure factor has its maximum. The maximum value is finite
as one can see from a finite-size analysis. The momentum dependence and the finite-size
effects of the longitudinal structure factoraat= 0 andM = 1/4 are shown in figure 7. The
situation is completely different in the frustrated case witk: 1/4, which is also shown in

figure 7. Here the finite-size dependence of the longitudinal structure factoeaps(M)
reveals a logarithmic singularity:

N—oo

S3(1/47 pS(M)’ M? N) — aC(M) InN (42)
with slopes

0.57(5: M = 1/6
ac(M) =1 0.44(3): M =1/4 (4.3)
0.23(1): M = 1/3
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Figure 8. The longitudinal spin-spin structure factdi(c, p, M, N) for « = «a, and

M =1/6,1/4,1/3; (a) atp = p3(M) versus IV, (b) versus—In(1 — p/p3(M)).

as can be seen from figure 8(a). Approaching the soft mode (4.1) from the low-momentum
side p < p3(M), we observe again a logarithmic singularity in the momentum dependence:

P=>D3 A p
S3(1/4, p, M, 00) —> —a.(M)In (l — p3(M)> (4.4)

as is demonstrated in figure 8(b). The slopes
0.59(6): M = 1/6
0.43(4): M =1/4
0.27(2: M =1/3

G (M) = (4.5)

are in remarkable agreement with the slopes (4.3). This indicates that there is scaling in the
combined limit

p
My=[(1-
(M) ( pa(M

p — p3(M) N — o0

)) N fixed. (4.6)

For large momentum valuep > p3(M) we find an approximate constancy of the
longitudinal structure factors in both cases= 0 ande = 1/4:

2
Sg(Ol, P, M, N) = ;pg(M) (47)

The interval where (4.7) holds seems to enlarge with increasing valudsaofd decreasing
values ofa.

Let us now turn to the dimer—dimer structure factors in the presence of a uniform field.
The momentum dependence at fixed magnetizatibe- 1/4 anda = 0, 1/4 is shown in
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Figure 9. The momentum dependence of the dimer—dimer structure factor at fixed magnetization
M =1/4 fora = 0, 1/4.

figure 9. We again find a logarithmic increase with the system BAizat the soft-mode
momentump = p3(M) for a = a.:

N—o00

D(/4, ps(M), M, N) — d.(M)InN (4.8)
with slopes
0.70(3): M = 1/6
d.(M)={ 0.86(5: M =1/4 (4.9)
0.49(3): M =1/3

as can be seen from figure 10(a). From scaling in the combined limit (4.6) we also expect
a logarithmic singularity in the momentum dependence:

D(1/4, p, M, 00) =5 —d.(M)In (1 - pSfM)) : (4.10)

The slopes

A 0.78(3): M = 1/6
d.(M)=1{ 0.893);: M =1/4 (4.11)
0.82(3: M = 1/3

can be taken from figure 10(b). The first two agree with the slopes (4.9), which justifies the
scaling hypothesis for the dimer—dimer structure factors for the soft mode (4.1) for small
values of M. The discrepancy a4 = 1/3 indicates that the scaling argument does not
hold here.
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Figure 10. The dimer—dimer structure facté@¥(«, p, M, N) for« = «, andM = 1/6,1/4,1/3,;
(a) atp = p3(M) versus IV, (b) versus—In(1 — p/p3(M)).

5. Transverse structure factors in the presence of a uniform field atx = a,

The momentum dependence of the transverse structure factors at fixed magnetization
M = 1/4 is presented in figure 11 fer = 0 anda = 1/4, respectively. In contrast to in

the longitudinal case, the maximum of the structure factor is found hepe=atr. The
almost linear behaviour in (A — p/m) for « = 0 signals that the transverse structure factor
diverges atp = w. Fora = 1/4 the singularity atp = = appears to be less pronounced.
Note also that the transverse structure factor is almost constant for small momenta:

2
Si(a, p, M) = ;pl(M) p<piM)=27M. (5.1

At p = p1(M) we observe a break. Here finite-size effects are larger, as can be seen from
the inset in figure 11. They indicate the emergence of a nonanalyticity in the transverse
structure factor for the ‘soft modep = pi(M). All these features are evident in both
cases = 0 ando = 1/4. Differences appear in the finite-size behaviour for the soft
mode p = p1(M). They are larger in the unfrustrated case= 0, than in the frustrated
casea = 1/4. This indicates that the type of the singularity for the soft mpde p;(M)
changes with the frustration parameter

The transverse structure factor at momentpm= 7 versus the magnetizatiol is
shown in figure 12 for the unfrustrated and frustrated cases at 0 ando = 1/4
respectively. The increase with the system siecan be observed for all values of
that are not too large. Therefore we expect from this behaviour as well that the transverse
structure factor diverges fa¥ — oo and M fixed. The strength of this singularity changes
with M and«. In the unfrustrated case, = 0, we see a stronger singularity &t = 1/4
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Figure 11. The momentum dependence of the transverse spin—spin structure fatfoedt/4
for « = 0, 1/4. The inset is a magnification of the low-momentum behaviour.

than atM = 0, which means that a weak magnetic field strengthens the antiferromagnetic
order in the transverse structure factor. This strange phenomenon does not occur in the
frustrated case at = 1/4.

6. Conclusions

This paper is devoted to an investigation of the spin-fluid—dimer phase transition in the

frustrated AFH model (1.1). Signatures for this phase transition have been found before
in the level crossing of the first excited states [5] and in the long-range order of the spin—

spin and dimer—dimer correlators [2]. We found the most pronounced signatures in the

magnetization curve and in the momentum dependence of the spin—spin and dimer—dimer
structure factors in the presence of an external field.

(i) The singular behaviour of the magnetization curve near saturgior- 4) is quite
different fora = 0 anda = 1/4. In the first case one has the well-known square-root
behaviour (3.14) first derived in [18]. Our numerical results favour a quartic-root behaviour
(3.15) in the magnetization curve of the frustrated model at 1/4.

(ii) In the presence of an external field with magnetizatignthe longitudinal spin—
spin, the dimer—dimer and transverse spin—spin structure factors develop singularities at
field-dependent momenta = p3(M) = (1 — 2M) and p = p1(M) = 27 M, which are
associated with soft modes. For fixéf] the positioning of these singularities is independent
of the frustration parameter. The strength of these soft-mode singularities depend& on
ando.
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Figure 12. The transverse spin—spin structure factopat = versus the magnetizatia for
N=4..., 28. @)a = 0; (b) o = 1/4.

(iii) The longitudinal structure factor has its maximum at the soft-mode singularity
p = p3(M). It is finite and looks like a cusp in the unfrustrated model witk- 0. In the
frustrated model withe = 1/4 we find a logarithmic divergence (4.4).

(iv) The dimer—dimer structure factor at= 1/4 also develops a logarithmic singularity
(4.10) for p — p3(M).

(v) The soft-mode singularity in the transverse structure factor looks like a break at
p = pi1(M). Finite-size effects at this momentum are quite different doe= 0 and
a = 1/4. The transverse structure factor seems to be finite at p; (M), but diverges at
p = & for fixed M not too large. The strength of this divergence dependafoand .

Away from the singularities the spin—spin structure factors are rather insensitive to
variations of the frustration parameter The longitudinal structure factor (4.7) is almost
constant for large momenta > p3(M) and the transverse one (5.1) is almost constant for
low momentap < pi1(M). Indeed this property seems to be stable against any kind of
perturbation. For example, it has also been found in the anisotkofiemodel [19].
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